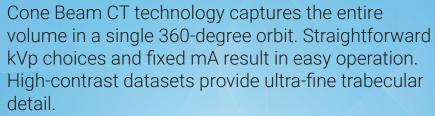
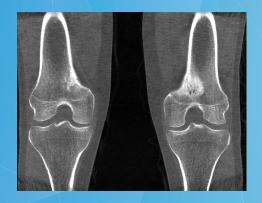
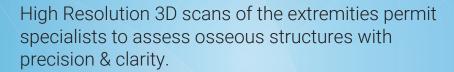
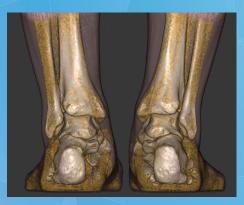

BILATERAL, WEIGHT BEARING CT IMAGING FOR THE KNEES & FEET PLUS HAND & ELBOW




FDA 510(K) CE Marking




The CurveBeam **LineUP** is an extremity Cone Beam CT scanner that images the weight bearing lower extremities, hand, and elbow.

Bilateral, true weight bearing CT scans allow physicians to assess biomechanical spatial relationships and alignment.

The 3D renderings were created in CubeVue, CurveBeam's custom visualization software.

FITS ANYWHERE 49" x 63" footprint Self-Shielded Standard 115 (US)/220 (Int) VAC Outlet

EASY TO OPERATE

Easy entry & positioning Straightforward kVp choices Fixed mA

QUICK SCAN TIMES

Less than 25 seconds per Scan

0.3 MM SLICES + X-RAYS

3D Reconstructions, Multi-Planar Slices, Digitally Reconstructed Radiographs, X-Rays

DICOM/PACS COMPATIBLE

ULTRA LOW DOSE

MINIMAL MAINTENANCE

STANDARD BILLLING

CPT 73200 CT Upper Extremity **CPT 73700** CT Lower Extremity

Total Access to Images

- CubeVue custom viewing software gives specialists powerful visualization tools to optimally view high resolution images.
 - Instant reformatting and re-orientation of MPR Slices and 3D renderings
 - Segmentation of individual bones
 - Creation of custom MPR slabs
 - Measurement with distance and angle tools
 - Automatic presentation of Insta-X (Digitally Reconstructed Radiographs) with every scan
 - DRR's are synthesized x-ray views, mathematically reconstructed from the original CT volume. DRRs represent the actual anatomical sizes and angles with no magnification or distortion, and all standard and/or custom views are created from the original scan, without the need to re-position the patient.

CubeVue 3D Rendering + MPR Tab

CubeVue Insta-X Digitally Reconstructed Radiographs Tab

X-Ray Protocols

Ability to capture true digital radiographs accomodates orthopedic workflows.

Optimized Images

CurveBeam's proprietary MAR algorithm detects, isolates and suppresses artefact while also preserving image quality in artefact-free regions.

After Metal Artefact Reduction

Ultra Low Dose

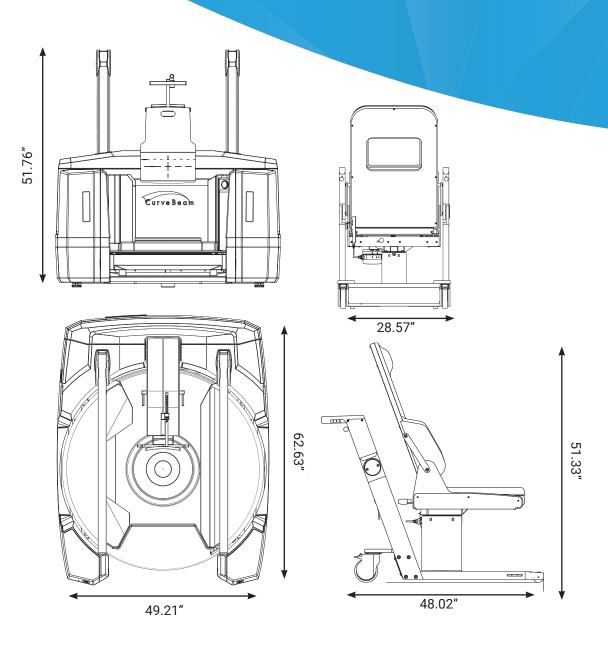
Effective Radiation Dose Chart		
Technique	Adult (μSv)	Comparable Natural Background Radiation
Bilateral Knee LineUP CT	1.1	3.3 hours
Bilateral Foot & Ankle LineUP CT	3.2	9.6 hours
Unilateral Hand LineUP CT	0.5	1.5 hours
Bilateral Knee LineUP X-Ray	0.04	0.12 hours
Bilateral Foot LineUP X-Ray	0.04	0.12 hours
Hand Lateral LineUP X-Ray	0.04	0.12 hours
Bone Densitometry (DEXA)	1	3 hours
Extremity X-Ray Radiography	1	3 hours
Unilateral Foot & Ankle Helical CT (Siemens CARE Dose)	70 25	8.75 days 3.13 days

The average person in the U.S. receives an effective dose of about 3000 micro Sieverts (μ Sv) of radiation per year from naturally occurring radioactive materials and cosmic radiation from outer space.

- Ludlow, J. "Hand-wrist, Knee, and Foot-ankle Dosimetry and Image Quality Measurements of a Novel Extremity Imaging Unit Providing CBCT and 2D Imaging Options". Draft version 1/18/2018
- International Journal of Diagnostic Imaging, Vol. 1, No. 2, 2014
- RSNA; Radiologyinfo.org/en/info.cfm?pg=safety-xray
- Journal of Bone & Joint Surgery, Vol. 91-A, No. 8, August, 2009

Flexible Positioning

The LineUP is a complete multi-extremity imaging solution.


- · Bilateral, weight bearing knee
- Bilateral, weight bearing foot & ankle
- · Bilateral, non weight bearing foot & ankle
- Hand and Flbow

About CurveBeam

CurveBeam designs and manufactures Cone Beam CT imaging equipment for the orthopedic and podiatric specialties. CurveBeam was founded in 2009 and is privately owned and operated.

CurveBeam's corporate office is located in Hatfield, Pennsylvania, USA. All CurveBeam systems are designed and manufactured in the USA.

CurveBeam's Europe office is located in London, United Kingdom.

The core team behind CurveBeam developed and pioneered the first commercially viable Cone Beam CT imaging systems for the dental/maxillofacial specialties starting in 2003.

In 2012, CurveBeam introduced the pedCAT, a bilateral weight bearing CT imaging system for the foot & ankle.

In 2017, CurveBeam's InReach system, a multi-extremity CT optimized for hand, wrist & elbow imaging, was cleared by the FDA.

CurveBeam

2800 Bronze Drive Hatfield, PA 19440

www.curvebeam.com info@curvebeam.com 267-483-8081

Bilateral Weight Bearing CT Imaging